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Abstract
This paper presents a prototype implementation of a module for optimising the join order
in an SQL query. It uses a randomised algorithm based on the simulated annealing method.

Combined with the relational database management system PostgreSQL the module can be
used to plan arbitrary SQL queries.
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Introduction

Part of the process of planning a query is determining the order in which relations are joined
and the decision to execute the joins in a particular order can often be critical for the speed
of the later execution step. It is more and more frequent that database systems need to deal
with queries involving hundreds or even thousands of joined relations. Techniques like join
and subquery flattening contribute to increasing the number or relations that are considered
simultaneously for a join. Visual report building systems and data mining software frequently
generate queries with numerous outer joins.

Finding the optimal join order for a SQL query is in general an NP-hard problem [13]. For
small queries searching through the entire solution space is feasible, but in many practical
cases it would lead to unacceptable planning times and, even before that, memory exhaustion.

A popular approach to solving that problem is using randomised algorithms. The relational
database management system PostgreSQL includes a module called GEQO (GEnetic Query
Optimiser) which, as the name suggests, uses a genetic algorithm to plan queries.

In this paper we will present an optimiser module implementation that is an alternative to
GEQO and is based on the simulated annealing technique. We will describe how the module
integrates with the rest of the PostgreSQL optimiser and compare the results obtained by
using our module with the ones produced by GEQO.

The proposed module is called SAIO and the ideas centred around that project have
been presented during the 2010 PGCon, an annual conference gathering top contributors,
administrators and users of PostgreSQL. It has been deemed interesting by the community
and might eventually find its way into the official PostgreSQL codebase.






Chapter 1

Problem description

In this chapter we will give an overview of the problem and the various approaches that can
be found in existing literature. We will define what constitutes a solution, what are the ways
in which a solution can be transformed into another and how are solutions compared between
each other.

1.1. Solution space

The goal of the join order search module is to create a plan of accessing disk data underlying
the relations to be joined and ways of constructing relations that are results of joins, eventually
obtaining a single relation, which is the result of the entire join. We will therefore consider as
solutions structures providing the information on accessing base relations, the order in which
they are combined and the ways the combinations are made.

In practise a solution can be represented as a binary tree. The leaves are base relations,
usually corresponding to a physical table in the database. The inner nodes are relations that
are created by joining the child relations. The root node is the result relation. The nodes are
labelled with the specific way of constructing the node, which we will discuss later. In every
join node we can distinguish the inner and the outer child, which reflects the asymmetry of
the join operation — even if joining A with B yields the same result as joining B with A,
the cost is often different.

1.1.1. Left-deep, right-deep solutions and bushy plans

Solutions can be classified based on the shape of the result tree. A special class of solutions
are ones that always have a base relation as the outer join node. This effectively means
constructing the final relation by first joining two base relations, then joining the result to
another base relation, then to another and so on. Trees representing such solutions are called
left-deep query processing trees. Previous research has been done focusing specifically on
left-deep trees and some existing algorithms only yield such trees as results [17].

By analogy, a right-deep tree is one that always has a base relation as the inner node of a
join. Left and right-deep solutions are not very different, but research proves that constraining
the solution space to these types only gives unsatisfying results [16].

Another class of solutions are ones that contain intermediate relations as both the inner
and outer side of a join. The plans created by these solutions are called bushy plans and allow
the highest amount of freedom in creating the join order, as obviously the set of all left and
right-deep plans is a strict subset of the set of all bushy plans.
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All optimiser modules used in PostgreSQL are capable of yielding bushy plans and the
solution proposed in this paper also supports supports such output.

1.1.2. Considered join types

There are many ways to form a join between two relations. While the result of constructing a
join is always the same, the algorithm used can have a big influence on the runtime. Moreover
the way of constructing a lower level join can influence the cost of constructing higher level
joins. A typical situation is when an algorithm applied to construct one join is more expensive
compared to another, but produces sorted output, thus sparing the upper nodes in the tree the
necessity to resort data before applying procedures that need sorted input. The PostgreSQL
optimiser considers the following join types:

¢ Nested loop join
e Merge join
o Hash join

The nested loop algorithm [3] has been of special interest to researchers and it has been
shown that even narrowing the problem to only take nested loop joins into consideration, it
remains NP-complete [5].

1.1.3. Considered access methods

Data that will compose the final result is read from disk. The base relations usually have a
one to one correspondence to tables stored on disk (more on situations where base relations
are not equivalent to tables will be said in chapter 2). There are different methods in which a
database management system can access disk data, and depending on the pattern of access,
index presence and usage and order in which they are accessed, the cost of getting the data
to be joined can vary. PostgreSQL supports the following access methods:

e Sequential scans
e Index scans

e Bitmap index scans

Given that, we can represented a join tree graphically, putting r1, r2, r3, etc as base
relation names, labelling their corresponding nodes with an access method and labelling the
upper level nodes with the join type.

1.2. Possible moves in the solution space

Both the current genetic algorithm used by PostgreSQL and the module described in this
paper have a notion of transforming one point in the solution space into another. It is
important to determine the possible moves that can be taken in each algorithm step.

One class of moves is changing the access method of a base relation. Such moves are
always valid, because regardless of the way the relation data is accessed, the result is always
the same. The only difference between data obtained via different access methods is the sort

12
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Figure 1.1: An example join tree representing a join between two relations, r1 and r2, both of
which are accessed through a sequential scan. They are joined using the nested loop algorithm,
with the result being joined with a hash join to r3. 73 is accessed using an index.

order, which only means that for some combinations the planner will have to consider the
overhead of sorting tuples being read before using them in the join algorithm.

Another class of moves that lead from a valid point in the solution space to another valid
point is changing the join algorithm. Regardless of the join algorithm used, the result of
performing a join is always the same and again, the only difference is the sort order (or the
lack of it) of the output.

If only inner joins are considered, valid moves also include changing the order in which
the joins are applied. These types of moves are governed by the following equivalences [16]

e commutativity: r1 X r2=7r2 X rl
rl,r2 rl,r2

e associativity: (r1 X r2) X r3=rl1 X (r2 X r3)

rl,r2 r2,r3 rl,r2 72,13

o join exchange: (rl1 X r2) X r3=(rl X r3) X r2

rl,r2 rl,r3 rl,r3 rl,r2

where 1l>d2 is an inner join operation using a predicate on relations r1 and 72.
rl,r

This brings us to the set of theoretically valid moves that the algorithm can take when
randomly exploring the solution space. Access methods and join algorithms can be changed
always, whereas the above join tree manipulations are in general only applicable when
considering inner joins. We will explore the issues that arise when outer joins enter the
scope of the problem shortly.
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Figure 1.2: The result of joining 71 with r2 is the same as the result of joining r2 with r1 if
it is an inner join

rl

1.2.1. Join restrictions

A join clause in applied SQL is very often accompanied by a restriction clause, that constrains
the rows that the join will output. In standard SQL syntax join restrictions can be expressed
with the JOIN ON or JOIN USING syntax. However, many times the application writer
writes out all joins in a query using the Cartesian join syntax and then puts constrains on
the output rows using the WHERE clause. Indeed, the following two queries are equivalent:

e SELECT cl, ¢2, ¢c3 FROM rl1 JOIN r2 ON (rl.cj = r2.¢j)

e« SELECT cl, c2, ¢c3 FROM rl, r2 WHERE rl.cj = r2.cj

When lots of relations are being joined together it is very important for the optimiser
module to detect the restrictions of each join and be aware of them in the process of deciding
the way of executing a query. Consider the following query:

SELECT cl, ¢2, c3 FROM r1, r2, r3 WHERE rl.cj = r2.cj AND r2.ck = r3.ck

Executing that query as (rl 1D<I ) r2) X r3 will allow the executor to handle only the rows that
rir

rl,r3
match the restriction clause between r1 and 72 when executing the join with r3. Executing

the query as (rl 19427“3) 1N3'r2 will create a Cartesian join in the first step, which almost
rl,r rl,r

surely will result in bad performance.

1.2.2. Outer joins and join order restrictions

The presence of outer joins changes the space of valid moves in the solution space dramatically.
When considering a left join, the commutativity and associativity equivalences given in 1.2
no longer hold. The join exchange equivalence is still valid, though. A simple counterexample

depicted in figure 1.3 shows that the left join operator P(Jid ) is not commutative.
ri,r

Constructing a counterexample for the associativity equivalence is a bit harder. In fact,
the equivalence holds when the join uses a predicate that is never true when any of the
operands is not NULL. PostgreSQL calls such predicates strict and if a left join is made using
a predicate marked as strict, it will consider the join to be associative. In the general case,
however, associativity of left joins can be disproven if the predicate can become true for NULL
input. An example is the SQL standard IS NOT DISTINCT operator. Figure 1.4 illustrates this
example. RIGHT joins are subject to the same restrictions and in fact PostgreSQL implements
RIGHT joins as LEFT joins, by simply switching the joined relations around.

We can now see that the moves that an algorithm can take in the solution space are
limited not only by whether a particular join is an inner or an outer join, but sometimes even
by the properties of predicates that are used for joining. The fact that PostgreSQL allows
user-defined operators to be used as join predicates complicates the matter even further.
Many algorithms proposed by researchers only consider inner joins [7] [9] [11] and cannot
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Figure 1.3: Exchanging the inner and outer relation of a left join produces different results.

rl r2
cl | c2 cl | c3
1 1 1 1
2 1 2 2 1 2
313 4 | 4
rl ™ 72 r2 X rl
P(rl.cl,r2.cl) P(rl.cl,r2.cl)
cl | c2 c3 cl | c2 c3
1 1 1 1 1 1
2 1 2 2 1 2 2
313 w 4 | w 4

Figure 1.4: Changing the order of applying Left joins produces different results with a
predicate that is not strict, for example IS NOT DISTINCT.

rl r2 r3
cl | c2 cl | c3 c3 | c4d
1|1 111 111
2| 2 2| 2 2
313 4 | 4 )
(rl ™ r2) ™ r3 rl ™ (r2 ™ r3)
P(rl.cl,r2.cl) P(r2.¢3,r3.c3) P(rl.cl,r2.cl) P(r2.¢3,r3.¢3)
cl c2 c3 c4 cl c2 c3 c4
1 1 1 1 1 1 1 1
2 2 2 2 2
3 3 ) 3 3

be directly applied in a general purpose SQL database system. The PostgreSQL optimiser
is careful to track restrictions imposed on the join order by the presence of outer joins and
enforce them during planning.

1.3. Cost model

The join order in PostgreSQL is determined purely at the planning stage, before reaching the
executor. This means that any algorithm will only have access to statistical data gathered
during the runtime of the database system. This also means that the quality of a plan is
measured by the estimated cost of executing the query. If a plan with a superior estimate yields
inferior execution performance, it has to be considered a failure of the executor submodule.
The planner only operates on estimates and relies completely on the statistics subsystem to
get correct data. A relational database management system uses primarily three resources of
the host operating system: the disk, the main memory and the CPU. A widespread assumption
is that the cost of disk input/output operations dwarfs the cost of memory and CPU usage,
and some authors only consider disk I/O as a contributing factor to query execution cost
[16]. On the other hand, small databases running on systems with large main memory often
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fit completely in RAM. In such databases disk I/O stops being the bottleneck of query
execution and predicted CPU consumption starts deciding on the quality of a plan. Finally,
there are subtleties concerning the memory access patterns of databases that fit in RAM,
where reference locality starts playing an important role [10]. Data access patterns even more
important with data on rotating mediums (such as traditional hard drives), where reading
disk blocks sequentially is often much cheaper than random access. PostgreSQL takes the
road of combining disk I/O and CPU utilisation in a single cost model. The cost of executing
a query is expressed as a unitless floating point number. User-defined operators and functions
can make cost estimation more difficult, as the database system cannot know the real cost
of executing them. This problem is specific to PostgreSQL, as the extensibility of the system
allows users to define operators that perform arbitrary database queries or even execute
arbitrary application code.
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Chapter 2

The PostgreSQL optimiser

This chapter focuses on the internals and specifics of the PostgreSQL optimiser. As a general
purpose database, PostgreSQL needs to handle a wide variety of SQL constructs and its
extensibility means that it has to be able to efficiently plan complex joins, both outer and
inner, while dealing with user-defined functions and operators.

2.1. Query planner algorithm

PostgreSQL represents both base relations and relations created as join results as structures
called RelOptInfo. Each RelOptInfo contains a list of Path structures, that represent the
way a relation is constructed. For each RelOptInfo various Paths are considered, if they can
provide output in different sort order. It is important, because some join types require sorted
input, which means that a Path that imposes an order on the tuples might be a better choice
than a Path that is cheaper, but guarantees no ordering, because it would have to be sorted
anyway before executing the join.

The join planning module starts by creating a RelOptInfo structure for each physical table
in the query. If the query includes subqueries they might be planned separately, by invoking
the planner recursively on them. A RelOptInfo created from a physical table has several
Paths, corresponding to the available access methods on the table. These include a sequential
scan and various index scans if the table has indices. Next the join order is determined. A join
always happens between two RelOptInfos and the result of a join is also a RelOptInfo. Path
structures in RelOptInfos that are join relations correspond to the join algorithm used, and
so there can also be multiple of them present. In each RelOptInfo PostgreSQL only keeps a
single Path (the cheapest one) per possible sort order. More expensive methods of obtaining
the same result in the same order are clearly inferior and are discarded immediately.

Each RelOptInfo contains two special Paths, the one that will produce the output fastest
and the one that will start outputting data earlier. They are called, respectively, the cheapest
total path and the cheapest startup path.

RelOptInfo structures are labelled with sets of numbers. The ones created from physical
tables or from recursive planner invocation are given one-element sets as labels, typically 1,
2, 3... After that RelOptInfos created by joining two lower level structures are labelled with
the set union of the child labels. And so the RelOptInfo created as a join of 1 and 2 would
be labelled (1,2). Because a RelOptInfo contains all possible Paths that lead to a certain
result, using unordered sets as labels is possible. Two RelOptInfos with the same label always
represent the same result — the result of joining base relations in any order that respects
rules outlined in 1.2.

17



2.1.1. Query flattening

An SQL query is parsed by PostgreSQL into a tree structure. The FROM list is an important
node in that tree, as it contains the names of relations appearing in the FROM clause, which
are joined together. Explicit JOIN clauses are separate nodes in the parse tree and so relations
joined explicitly appear at a different level in the parse tree than the ones joined implicitly.
The planner flattens the query tree by transforming explicit JOIN clauses into FROM entries
and by saving the join condition in a RestrictInfo structure. Similarly, it scans through
the WHERE clauses to find ones that involve relations that are joined together and creates
RestrictInfo structures from them as well.

SELECT c1, c2, c3 FROM r1, r2 JOIN r3 ON (r2.c2 = r3.c2) JOIN r4 ON (r3.c3 = r4.c3) WHERE rl.cl = r2.cl

Figure 2.1: The parse tree representing a query. Explicit JOINs are constructed as separate
nodes and relations appearing in the FROM list are put in a separate list.

SELECT cl1, c2, c3 FROM r1, r2, r3, r4 WHERE rl.cl = r2.cl1 AND r2.c2 = r3.c2 AND r3.c3 = r4.c3

Figure 2.2: The parse tree is flattened, explicit JOINs are converted to restriction qualifiers
and the relations being joined are put in the FROM list.

Another axis along which flattening is done are subqueries. If a subquery appears in

the FROM list it is pulled up in the parse tree and transformed into a JOIN clause. These
operations are done to make sure the planner has as much liberty as possible when determining

18



join order for base relations, which means making the list of joined relation as big as possible
and avoiding recursive planner invocation. On the other hand, as we mentioned earlier join
planning is an NP-hard problem and so PostgreSQL tries to prevent excessive growth of
the join list to avoid an uncontrollable increase in planning time. There are user-definable
parameters that tell the planner what is the maximum number of subqueries that will get
pulled up and transformed into JOINs and similarly how many explicit JOIN clauses will be
flattened into a single JOIN list before deciding that the particular JOIN needs to be solved
recursively as a separate subproblem.

SELECT c1, c2, c3 FROM r1, r2, (SELECT * FROM r3) AS r3 WHERE rl1.cl = r2.c1 AND r2.c2 = r3.c2

where-list

Figure 2.3: Subqueries have their own parse trees and can be planned separately if the are
not pulled up into the parent join.

SELECT c1, 2, c3 FROMrl, r2, r3 WHERE rl.cl1 = r2.c1 AND r2.c2 = r3.c2

SELECT

from-list where-list

& @ (D G

Figure 2.4: The subquery is pulled up and merged with the other relations in the FROM list.
Other considerations apart from user defined limits can prevent the planner from flattening

joins and pulling up subqueries. If a subquery contains function execution the planner cannot
pull it up, because it could change the number of times a function is executed. Since in

19



PostgreSQL functions can perform arbitrary operations, including modifying database tables
or executing application code, the planner cannot do any optimisations that could result
in a different number of executions. Users are provided with a syntax to mark functions
guaranteed to never change the database state on multiple executions and such functions
do not prevent subquery pulling. Subqueries with GROUP BY or LIMIT/OFFSET clauses
are also never pulled up, because that would obviously change the result of the whole query.
Also joins sometimes cannot be flattened; for instance PostgreSQL will never flatten a FULL
OUTER JOIN;, so putting one in a query forces the planner to recursively plan the two sides
of the join and execute it only after both sides are computed.

2.2. Query tree transformations

The parse tree undergoes some additional transformations before it is handed over to the join
search module. They are aimed at producing higher quality plans either by narrowing down
the solution space or by allowing more relations to take part in the join search algorithm.

2.2.1. Join removal

The PostgreSQL planner tries to identify joins that can be removed without influencing
the result. Obviously, when a join can be discarded while maintaining the same result, it
constitutes a better plan than executing that join. There are several conditions that have to
be met for a join to be removed:

e it has to be a left join

e a unique constraint has to exist on the join column of the table on the nullable side of
the join

e the operator used in the join condition is never true on NULL input

e mnone of the columns from the nullable side of the join can appear in the query outside
of the join condition

If all these conditions are proven to be true, join is not executed and is removed from the
parse tree. An example of join removal would be transforming the following query:

SELECT rl.cl, rl.c2, r1.r2_id FROM r1 LEFT JOIN r2 ON (rl.r2_id = r2.id)
into:
SELECT rl.cl, rl.c2, r1.r2_id FROM rl1

assuming that id is the primary key of the 2 table. Such situation ofter arises in automatically
generated queries, where reporting software puts useless joins in the query and only some
columns are actually used by the client.

Join removal can only take place in case of a left join, because in inner joins the number
of rows emitted by the join can be smaller than the number of rows that would be emitted
if only the left-hand side of the join was scanned. The presence of a unique index on the
join column ensures that the number of rows in the result will not be fall compared to the
number of rows the join would produce. The requirement for the operator to be strict (cf.
1.2.2) is there to prevent the situation where less rows are emitted after removing the join,
because the nullable side of the join contained multiple NULL values in the join column —
the requirement for a unique constraint is not strong enough to prevent that, as NULLs are
never equal to each other.

20
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2.2.2. Semi and antijoins

There are some kinds of SQL constructs that the planner will transform into joins, even though
they are not syntactically joins. The PostgreSQL planner is able to transform EXISTS and
NOT EXISTS expressions into semijoins and antijoins, respectively. This means that queries
such as

SELECT cl, ¢2, ¢c3 FROM r1 WHERE EXISTS
(SELECT 1 FROM r2 WHERE rl.cl = r2.c2)

will be transformed by the planner into a semijoin between 1 and r2. Similarly, NOT EXISTS
constructs are transformed into antijoins. Of course semi and antijoins also impose join order
restrictions and cannot be freely rearranged with inner joins. Each time the planner decides
to transform an EXIST clause into a join, it stores additional information in the parse tree
to track which join orders are prohibited.

2.3. The standard join order planner module

The standard join order module implements a dynamic algorithm that explores the entire
possible solution space.In each step the algorithm fills the nth level of the accumulator with
relations consisting of n 4 1 joined based relations. It is an improved version of the original
system R optimiser algorithm [14].

The procedure for building relations maintains a global cache to prevent building the same
RelOptInfo multiple times. One needs to remember that RelOptInfos are labelled with sets
of identifiers of base relations. If the function creating a new RelOptInfo finds a relation with
the label that is the union of the labels of its arguments, it simply returns that cached relation
instead of constructing a new RelOptInfo and adding all possible Paths to it. This makes
the planner code simpler, as it can keep trying to join relations even if the particular join
has already been created while adding no performance penalty. This can however become an
issue for join search modules that want to repeatedly plan the same query and each time need
all RelOptInfos and their Paths to be recreated. As we will see in section 2.4 the standard
way of dealing with this problem is truncating the global cache after each planning cycle.

2.3.1. Algorithm outline

First we define a helper function that gets passed a relation and a list of join candidates,
iterates over them and forms a new joinrel if their labels do not overlap, it has not yet been
constructed in the current level and there is a join restriction between the two relations. The
optional boolean argument can be used to force the creation of a join relation even if there
is no condition that prevents the join from becoming a Cartesian product.

function make_rels(rel, other_ rels, current_level, force=false):
for r in other rels:
if label(r) N label(rel) # 0:

continue

if label(r) U label(rel) € current level:
continue

if has_join_restriction(r, rel) and not force:
continue

new_rel = make_join_rel(rel, r)

if not new rel:
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continue
label (new_rel) = label(r) U label(rel)
append (current_level , new_rel)

The algorithm first finds all base relations, that is ones corresponding to physical tables
or subqueries. An accumulator array is initialised with the initial relations at the zeroth level
of the algorithm.

initial _rels = get_base_rels()
accumulator = array ()
accumulator [0] = initial rels

In order to fill level n the algorithm loops over relations from level n—1 and tries to join then
with every relation from the zeroth level — that is every base relation. In the special case
of level 1 an optimisation is done to prevent duplicate work. Because the relation building
routine is symmetrical, when processing relation r only relations that are after r in the base
relation list are considered. We introduce the A after x as all elements of the array L that
are farther in the array than element x.

for level in 1..length(initial rels):

accumulator [level ] = array ()
for rel in accumulator[level — 1]:
if level = 1:
other rels = accumulator [0] after rel
else:
other_rels = accumulator [0]

make_rels(rel, other_rels, accumulator[i])

Joining only to base relations yields left-deep plans. The PostgreSQL planner prefers such
plans and tries them first, but is also capable of building bushy plans. The next part of the
algorithm deals with bushy plans.

The planner loops over pairs of relations from lower levels and tries joining them together.
Again, the symmetry of the join building routine allows to only go halfway into the loop and
stop processing when all pairs that together would form relations of cardinality n are processed
(for algorithm level n).

k=1
while true:
other level = level — k — 1
if k >= other_level:
break

for rel in accumulator[k]:
if other level — k:
other rels = accumulator [other_level] after rel
else:
other rels = accumulator [other level]

make_rels(rel, other_rels, accumulator[i])
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k += 1

Finally the planner checks if there where any relations created on the current level. If not,
as last resort it tries to join the zeroth level relations but this time ignoring join restrictions,
which effectively leads to producing Cartesian joins.

if empty(accumulator|level |):

for rel in accumulator|[level — 1]:
if level = 1:
other rels = accumulator [0] after rel
else:
other rels = accumulator [0]
make_rels(rel, other_rels, accumulator[i], true)

Plan costs are determined be looking at the Path with the lowest cost contained in the
topmost RelOptInfo. There is one more subtlety that has to do with keeping both the cheapest
Path and the one that starts providing output tuples fastest. If the query being planned is
going to be used by a SQL cursor, plans that produce output faster are preferred. The
assumption is that the user will be fetching the output over a certain period of time, so even
if the query takes more to complete, the perceived performance will be better if some result
tuples will be available quickly.

2.3.2. Performance characteristic

The time complexity of the algorithm is exponential with the number of initial RelOptInfos.
This is a direct result of the fact that the underlying problem is NP-hard. There are other
issues with this way of solving the join ordering problem, though.

During the algorithm execution a list of all possible RelOptInfos is built, each one of
them containing all possible Paths that can be used to form the join. That can easily exhaust
the available memory, given a sufficiently large initial joinlist. Experiments have shown that
removing the limitation for the maximum number of relation for which the standard algorithm
is used caused the system to use all available memory long before it has reached execution
times that could be deemed unacceptable. It is important to note, that even if the inevitable
exponential growth of planning time would not be considered a fatal issue, the memory usage
renders the standard planning algorithm useless for very large queries.

2.4. The GEQO module

The PostgreSQL optimiser contains a pluggable interface that allows external modules to
implement parts of the planning algorithm. One module that is included in the default
distribution of PostgreSQL is called the Genetic Query Optimiser (GEQO). When handling
very large joins, it can significantly reduce the time and memory needed to plan queries, as
it is designed to maintain strict memory usage constraints and uses a randomised genetic
algorithm instead of exhaustive search, which prevents exponential runtime increase when
the number of relations grows. GEQO’s algorithm replaces the algorithm outlined in section
2.3.
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2.4.1. Algorithm outline

GEQO is based on the GENITOR algorithm, developed at Colorado State University [18].
This algorithm has primarily been used to solve the Travelling Salesman Problem and has
been adapted for the PostgreSQL project to be applicable for the join ordering problem. The
join order as a Chromosome structure, which is a string of Gene objects. Each Gene has a one to
one correspondence to a base RelOptInfo, that is one that has been created from a physical
table or a recursively planned subproblem. The order of the Genes in Chromosomes influences
the join order of relations, although as we will see later it does not explicitly determine it.

The cost model for GEQO is similar to the one used by the standard planner, with the
difference that startup cost is ignored, and plans are only compared based on their total cost.
Each Chromosome is assigned a fitness value that is inversely proportional to the total cost
of the join order that it represents, which means that cheaper Chromosomes are considered
more fit. The initial population of randomly chosen Chromosomes is then mutated, creating
new Chromosomes that if they are fit enough can replace their parents in the pool. There are
various mutation algorithms implemented:

e edge recombination crossover
o partially matched crossover [4]
« cycle crossover [12]

o order crossover [12]

e position crossover [2]

The choice of the mutation schemes used is taken at compilation time. The default source
distribution only uses edge recombination crossover (ERX), the rest of the algorithms are left
disabled. Some research suggests that ERX is indeed the method delivering the best results
[15].

Each time a Chromosome fitness is computed, the Genes are visited in the order defined by
the Chromosome and a join is created between one of the previously built RelOptInfos and the
one corresponding to the Gene being visited. An important feature of the GEQO algorithm
is that it only creates joins if there is a restriction clause that can be applied to the join, in
other words it is avoiding forming Cartesian joins. To achieve that, the algorithm introduces
a notion of Clumps, which are small wrappers around joined RelOptInfo structures that also
remember the number of relations joined. The processing starts with one Clump created from
the first Gene in the Chromosome and every time the Gene being visited points to a relation
that cannot be joined to any of the existing Clumps, a new Clump is started. The Clumps
are organised in a list sorted by the number of relations forming the Clump. This way the
new relations are first joined to the biggest Clump and only if it fails, or if there are no join
restrictions present, the next Clump is tried. After finishing the traversal of the Chromosome
the Clumps are joined together, first preferring joins with restrictions and finally, as a last
resort, forming Cartesian joins. The ability to join Clumps makes GEQO capable of producing
bushy plans.

Observe that the algorithm uses the same primitives to construct join RelOptInfos as the
standard planning module, which means that even if GEQO explores only some randomly
chosen join orders, it always considers all Paths that can lead to a join. For the same reason,
GEQO always considers relations involved in a join as both the inner and the outer join
relation. As noted in section 2.3, the procedure responsible for creating new RelOptInfos is
symmetrical.
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2.4.2. Performance characteristic

Each computation of a Chromosome fitness is done in a separate memory context and the
memory used for RelOptInfo, Clump and Path structures is freed afterwards. The internal
planner relation cache is also truncated after every Chromosome computation, to force the
rebuilding of all relations. Otherwise RelOptInfos retrieved from cache could contain Paths
that refer to join relations that will not be present under the join order defined by the current
Chromosome.

Freeing the planner resources after each recomputation gives GEQO a huge advantage
over the standard planning module, which keeps all previously built structures in memory
during the whole planning process. On the other hand it means that GEQO has to rebuild
the entire join tree every time the fitness of a Chromosome needs to be calculated.

The algorithm ends after a certain number of mutations, which is linearly dependant on
the number of relations being joined. The fittest Chromosome is chosen and a RelOptInfo is
built according to the Gene order defined by that Chromosome. The obtained relation is the
result of the GEQO algorithm. Having a fixed number of mutations before choosing whatever
join order is currently fittest allows GEQO to constrain the time it uses for query planning.

2.4.3. Known deficiencies

The GEQO module has been repeatedly accused of being suboptimal by the PostgreSQL
community. Historically, the mechanisms preventing Cartesian join creation were much more
strict, which lead to situations where queries with few join restrictions or with many join order
constraints could not be planned and were resulting in an error. The growing popularity of
SQL generating software caused queries with numerous outer joins and complex subselects to
become common. Such queries often have very strict constraints on the legal join order and
lots of Chromosomes that GEQO was creating were simply invalid, because they were defining
join orders leading to incorrect results under SQL semantics. This caused many Chromosomes
to be discarded and sometimes could even result in running out of iterations before creating
any valid join order. This has been since addressed by introducing the concept of Clumps, but
now it is possible that queries with lots of join order restrictions will increase the planning
time enormously because of having to check all joins for validity each time a Chromosome
fitness is computed.

Members of the community also expressed concern about whether the algorithm that
initially has been designed to solve the Travelling Salesman Problem is suitable for deciding
join ordering. It is not clear if the heuristics that work well for TSP are equally efficient
when planning a complex SQL query. There are no field proofs that ERX is indeed the best
mutation scheme that can be used, as the other algorithms are disabled in the source tree
and get no testing or user exposure. Finally, is the problem of queries with very strict join
order constraints that can require excessive amounts of CPU to be planned and that cause
repetitive and sometimes costly recalculation of long Chromosomes. Keep in mind that every
time a Chromosome fitness is calculated, all possible Paths for a given join order are created.
That is obviously a saving compared to the standard algorithm that would create every
Path for all possible join orders, but still can result in unacceptable planning times for large
joinlists.
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Chapter 3

The SAIO module

This chapter will focus on the optimiser module that aims to replace GEQO. It takes a
different approach than GEQO, choosing simulated annealing over genetic algorithms. We
will shortly present the basics of solving optimisation problems with simulated annealing,
how the ideas had to be adapted to fit the specific requirements of a PostgreSQL planner
module and how does the module leverage existing infrastructure to produce good quality
plans.

3.1. Algorithm overview

The algorithm starts by choosing any point from the solution space. It helps if the starting
point does not represent an overly expensive solution. We will see later that being able to
start from a decent solution allows the algorithm to produce much higher quality output. A
copy of the solution with the lowest cost among all generated solutions is also being kept
during execution.

An important concept that SAIO uses is the temperature. In general it is an arbitrary real
positive number. It gets set at the beginning of the algorithm and is being maintained along
with the current and minimal state during the whole run time.

state = min_state = any_ state()
temperature = starting_ temperature ()

The body of the algorithm consists of two nested loops. In the innermost loop the
algorithm generates a new state at random, based on the previous state. We will be calling
the process of reaching a solution from another solution a mowve.

do:
do:

new_ state = random_move(state)

The generated state can be either accepted or discarded. A discarded move is forgotten and
the current state remains unchanged. If the move is accepted, the generated state replaces
the current state. We call situations when generated states are cheaper than the initial ones
downhill moves, whereas moves that take the algorithm from a lower cost state to a higher
cost are called uphill.

Whether a move gets accepted or not depends on the current temperature and the the
difference of costs between the old and the new state. The rule is that downhill moves are
always acceptable and that uphill ones are accepted with some probability. The exact way of
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computing the probability of accepting uphill moves will be discussed later. If the new state
is cheaper than the cheapest one seen up to this point, it becomes the new minimal state.

if acceptable(new_state):
state = new_ state
min_ state = min(state , min_state)

The inner loop runs until the algorithm reaches a state called equilibrium. When this happens,
the outer loop decreases the system’s temperature and throws the execution back into the
inner loop. The decision to determine if the system has reached equilibrium can be influenced
by many variables and can get quite complex [17]. The equilibrium function used in the SAIO
module will be presented later.

while not equilibrium () # inner loop
reduce__temperature ()

Finally, the outer loop terminates when the system reaches yet another specific state, in which
we call it frozen. Once the outer loop finishes, the minimal state is returned as the result
of the algorithm. Again, different authors propose different ways of determining the frozen
state [8].

while not frozen () # outer loop
return min_state

Looking closely at the pseudocode we can discover from where the name simulated
annealing comes from. In metallurgy annealing is “a process that produces conditions by
heating to above the re-crystallisation temperature and maintaining a suitable temperature,
and then cooling” [1]. The algorithm follows a similar idea. We start with a hot system,
where particles have high energies and the state changes rapidly. After the changes cease,
which means the system reached equilibrium for the current temperature, we lower its energy
and let the particles settle down once again. Iterating this process allows reaching the state
with lowest energy.

We can see that simulated annealing is in fact a simple extension of a trivial random
wandering algorithm, where the starting point is chosen randomly and then moves are taken in
any direction that leads downhill. Such solutions have a severe problem of being easily trapped
in local minima, where all neighbour states are more expensive, but there still exist points
with lower cost in the solution space. The reason simulated annealing sometimes accepts
uphill moves is to prevent such situation. If the algorithm wanders into a local minimum
early in the execution, it has good chances of getting out of it and exploring other parts of
the solution space.

3.1.1. Data model

SATIO uses a slightly different data structure than the default PostgreSQL planner, namely
a QueryTree. They are binary trees, where every node has either zero or two children. The
leaves are primitive relations and the inner nodes represent joinrels built from the children
relations. This data model is much closer to the one presented in section 1.1, which is also
the prevalent one in existing literature. In context of PostgreSQL, QueryTree leaves hold
references to RelOptInfos that are the input of the join order planning module, while inner
nodes hold RelOptInfos constructed by joining the children.
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Figure 3.1: A visualisation of simulated annealing. The random walk manages to avoid the
local minimum and then goes down in the global one.

3.2. Simulated Annealing challenges

The presented algorithm looks compact and straightforward. The difficult part is concretising
the generic concepts that it uses. From previous section’s discussion we can that implementing
an optimisation module using simulated annealing requires solving the following problems:

a) finding an initial state

b) generating subsequent states

¢) defining an acceptance function

d) determining the equilibrium condition
e) suitably lowering the temperature

f) determining the freeze conditions

Finding the initial state is done very similarly to how GEQO does it. Instead of Clumps
SAIO uses QueryTrees but otherwise it starts by creating single node QueryTrees and then
looping over them, creating joins while preferring ones that have some join restrictions until
it produces a single QueryTree. That tree is always a valid solution for join ordering and the
starting point of the algorithm.

Generating new moves turns out to be the most complex part of the problem. SAIO
implements several ways of transforming a solution into another one, called strategies, that
will be separately discussed in section 3.3.

The acceptance function is defined in terms of previous state cost, new state cost and
current temperature. The probability of a move being accepted is defined as

costprev —costnew

P(accepted) = ¢~ temperature
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Figure 3.2: A QueryTree representing
a six relation join. Each node is a
reference to a RelOptInfo and also
stores the cumulative cost of creating
the joinrel. Nodes are labelled with sets
of integer numbers that are indices of
primitive relations in join. A node with
label (1 2 3) represents a join of relations
1, 2 and 3.

As previously noted if cost,e < costpre, the move is always accepted. Initial temperature is
chosen depending on the number of initial relations and drops geometrically after every step.

initial_temperature = I X initial__rels

new__temperature = temperature x K where 0 < K <1

The coeflicients used for temperature calculation are parameters of the algorithm. Usually
I is in the order of tens or smaller and K is around 0.9. However, because SAIO operates
on trees of RelOptInfos it is affected by the same specific PostgreSQL behaviour as GEQO
— namely that is considers all possible Paths for every join relation. Strictly speaking this
means that while exploring the solution space SAIO analyses several states in each algorithm
step. It also means that generating subsequent moves and estimating their costs requires
more computation time and memory, because every time it rebuilds all Paths for the current
QueryTree. As we will see, SATO includes measures to reduce the impact of this approach.

The equilibrium and freezing conditions are defined very simply [16]. The system is
considered to be in equilibrium after a fixed number of loops, which is linearly dependent on
the initial number of relations.

moves__to__equilibrium = N X initial__rels

This is somewhat counterintuitive when considering the annealing analogy, but turns out to
work good enough. While there are more complex methods of determining equilibrium [17],
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the simplicity of implementation, low computational cost and straightforward definition all
vouch for the fixed loops number method. Conditions for considering the system frozen are
equally simple — the temperature has to be below 1 and a fixed number of consecutive moves
has to be rejected by the acceptance function.

frozen(staten) <= temperature < 1 A{state;|i = N —F,..., N Aacceptable(state;)} = ()

If these two conditions are met, SAIO stops processing and returns the minimal state.

3.3. Moves generation

To understand the choices done in the move generation part of SAIO, some properties of
QueryTrees must be noted. First is that in a tree there is no distinction between the left child
and the right child. As we explained before, the PostgreSQL function that constructs a new
join relation from two other relations is symmetrical and always considers each of the two
arguments as either the inner or the outer side of the join. Another important observation is
that the actual join order is in fact determined by the tree structure and the order of leaves in
the tree. Because PostgreSQL considers all possible ways of joining two relations and because
RelOptInfos are labelled with unordered sets of integers, the content of inner nodes can
be always recovered by rebuilding the whole tree bottom to top. The only consideration is
avoiding too many rebuilds, which are the most costly part of the algorithm.

Figure 3.3: The two depicted QueryTrees are identical. Children nodes can be swapped around
without changing the join order encoded by the tree, and inner nodes can always be recovered
by rebuilding the tree.

Another important property the move generation algorithm has to have is freeing the
memory used in every step before continuing to the next one. As we explained in section 2.3
keeping all built RelOptInfos in memory is simply not possible when planning a large query.
To control memory usage, SAIO only keeps in memory the objects that are currently useful
to rebuild the final joinrel. There are additional problems that this approach brings, because
during the planning PostgreSQL modifies its internal structures making repeated planning of
the same part of a query difficult. On the other hand, the additional complexity to deal with
that brings substantial savings in runtime. The currently implemented version of the SAIO
module includes several move generating strategies that can be chosen by the user.
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All move strategies operate on a QueryTree and return a boolean result, true if the move
has been accepted, false if it has been rejected. After a move is rejected the QueryTree
structure is left unchanged, if it is accepted, it is modified to reflect the state after the move.
As noted earlier, only the links between nodes and the order of leaves are important. Most
move strategies start with a QueryTree that has its inner nodes uncalculated and rebuild
them in each step. There is one strategy that tries to avoid that overhead, at the price of
increased complexity. All implemented strategies are be presented in detail below.

3.3.1. SAIO move strategy

The basic strategy is called move. It starts by creating a MemoryContext structure that is
used to track all memory allocation happening during the runtime. This allows easier control
over memory usage and makes sure that all resources used for the current step are freed after
the step is finished. The functions entering and leaving the context, apart from tracking and
freeing memory used in the context, also save the state of the internal planner relation cache,
and upon leaving the context truncate it to avoid issues described in section 2.3.

function saio_move ():
context = MemoryContext ()
context__enter (context)

To execute a mowve step, two nodes from the query tree need to be chosen. The first one is
picked simply at random from all existing nodes, excluding the root of the tree. The second
node is chosen from all remaining nodes, eliminating the ancestors of the first node, its
children and its sibling node.

choices = children (root)

nodel = random_node(choices)

choices —= (nodel + children (nodel))

choices —= (ancestors(nodel) + sibling (nodel))
node2 = random_node(choices)

After choosing the nodes, the subtrees rooted at them are swapped around and the whole
tree is recalculated. During the recalculation process an invalid join might be detected, as the
strategy is just swapping any two nodes in the tree and this might lead to violating some of the
join order constraints. If such situation is detected, the move is treated as unacceptable and
reverted. The restrictions of choices for the second swap node are important. Because whole
subtrees are swapped, the chosen nodes cannot be in a parent—child relationship. As the swap
procedure is symmetrical, both ancestors and children of the first node must be eliminated
from the choices. Because the procedure used by PostgreSQL to construct RelOptInfos is
symmetrical, the sibling node also needs to be discarded, as swapping sibling nodes would
yield the exact same QueryTree as before the swap. Due to all that elimination process, it
might not be possible to pick the second node. In that case, the step ends in a failure.

if not node2:
context__exit (context)
return false

swap_subtrees (nodel, node2)

if not recalculate(root):
swap_ subtrees (nodel, node2)
context__exit (context)
return false
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If the reconstruction is successful, the acceptance function is called with the old state’s cost,
the new state’s cost and the current temperature. Accepted moves are kept, unaccepted moves
are reverted.

if not acceptable(old_cost, new_cost):
swap_ subtrees(nodel, node2)
context__exit(context)
return false

context__exit(context)

return true

The recalculation procedure is a simple recursive descent, building joinrels from lower level
relations and short-circuiting the computation in case of failure. It can be given an optional
argument that instructs it to omit part of the tree when rebuilding it. We will see later that
some SAIO strategies take advantage of that argument.

function recalculate (node, cutoff=NULL):
if node = cutoff:
return true
if not node—>left:
return true
ok = recalculate (node—>left)
if not ok:
return false
ok = recalculate (node—>right)
if not ok:
return false
node—>rel = make_join_rel(node—>right—>rel, join—>left —>rel)
if not node—>rel:
return false

The mowve strategy is useful for some cases, but also has some issues. The first is that
swapping two random nodes can change the join tree radically. It might look like simulated
annealing would work better with strategies that introduce localised changes, so the system
could settle on a global minimum while slowly going from one state to another. It turns out
that simply swapping nodes is an effective enough solution, the fact that all Paths are always
being rebuilt compensating for the somewhat erratic exploration of the solution space. Indeed,
with the current implementation the tree changes a lot, but every rebuild of the query tree
is in fact visiting several solution points simultaneously.

Another problem is that if the resulting query tree represents an invalid join order, the
recalculation procedure will eventually fail, rendering the whole work done in the current
step useless. With queries with strict join ordering constraints it has been observed that
as much as 30% of moves end up being semantically invalid and have to be discarded. All
Paths built have to be thrown away and the algorithm cannot advance. One can see that
problem as a tradeoff: higher failure rate means more runtime wasted on calculations that
then get discarded, and that prohibits setting the temperature reduction speed low enough
to thoroughly explore the solution space. Savings in the computational cost of each move give
immediate improvements in overall plan quality, simply because the algorithm can process
more states before the time it takes becomes unacceptable.
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(a) A query tree with two chosen subtrees. (b) A query tree after swapping the subtrees.

Figure 3.4: Visual explanation of the SAIO move strategy. Both trees are depicted after being
fully rebuilt. The move strategy rebuilds the entire tree after each move.

3.3.2. SAIO pivot strategy

Pivot is a strategy aimed at minimising failed recalculations and localising changes to the
query tree. Instead of swapping around subtrees, it operates on just three neighbour relations,
trying to apply the transformation

« (AXB)XC — AX(BXC)

Since the three relations involved are already being joined in the original solution, the hope is
to avoid disrupting the state too much by only changing the join order between them and to
have a greater chance of reaching a valid solution after executing the pivot. To avoid wasting
moves on transformations yielding invalid join orders, the move is being applied to a series
of nodes until it gets executed successfully.

In the context of QueryTrees it means choosing a node at random, excluding the root
node and the leaves, and calling it the pivot root. The strategy is to execute the pivot in a
loop until it succeeds.

function saio_ pivot ():

context = MemoryContext ()
choices = children (root)
choices = choices — all_leaves(root)
while not empty(choices):
pivot__root = random_node(choices)
choices = choices — pivot_root
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After that the sibling node of the pivot root gets swapped with one of its children. Because
query trees are symmetrical it does not matter which child is chosen for the swap. The query
tree then needs to be recalculated. In the pivot scenario the recalculation step is split into
two parts. First the subtree below the pivot root is recalculated. The idea is that if the pivot
introduced an illegal join, it will be detected faster if we focus only on its subtree.

swap_ subtrees(pivot root—>left , sibling(pivot root))
context__enter(context)
if not recalculate (pivot root—>parent):
swap_ subtrees(pivot_root—>left , sibling (pivot_root))
context__exit (context)
continue

If the recalculation of the pivot root parent tree succeeded, we can be sure that the whole
tree can be recalculated. This is because we know that the original tree could be recalculated
and the label of the node above the pivot root is the same before and after the pivot. As
RelOptInfos are identified by labels, we know that a relation with this label can legally
appear in the position above the pivot root and we only modified the tree below it. The only
way the move can now fail is if the acceptance function rejects it. To skip recalculation of the
already built part the algorithm uses the cutoff parameter of the helper function.

ok = recalculate (root, pivot_root—>parent)

assert ok

if not acceptable(old_cost, new_cost):
swap_ subtrees(pivot root—>left , sibling(pivot_ root))
context__exit(context)
continue

context__exit (root)

free (choices)

return true

If after iterating through all the choices we fail to rebuild the whole tree, the move ends in a
failure. This happens if the loop condition from line 5 becomes false.

assert empty(choices) # while loop exited
return false

The pivot strategy can be effective on queries with few join order constraints. It lowers
the probability of an odd constraint ruining the whole move, because in that case the pivot
root will be simply pushed downwards in the tree, until a successful move is found. The price
for that is big potential for duplicate computation, if the first pivot root happens to be high
in the tree and several attempts at pivoting result in semantically invalid join orders. In fact,
during one move execution the exact same join can be computed many times. Another group
of problematic queries are ones that initially have very large cost due to one particularly
badly chosen join. Localising changes to the tree does not pay off in this case, because until
the pivoted relations happen to be the ones involved in the pessimal join, the cost will stay
high. Overall, the pivot strategy leaves much to be desired and has no clear advantages over
the simpler move strategy.
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(a) A query tree with a pivot root and the rest of (b) A query tree after executing the pivot. The root
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(¢) In case of failure, another next pivot root is (d) Another pivot is attempted.
chosen.

Figure 3.5: Visual explanation of the SAIO pivot strategy. One failed attempt at rebuilding
the tree does not make the whole move to fail.
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3.3.3. SAIO recalc strategy

An attempt to solve the deficiencies of move and pivot strategies, recalc is the most complex
of all move generation routines that are currently implemented in SAIO. It is based on mouve,
but differs from other strategies by not freeing all memory used by the previous step every
time. Instead it tries to reuse the work done in previous moves and minimise wasted effort
coming from repeated recalculation of the same joins.

Since the built RelOptInfos are being preserved between strategy invocations, they cannot
all be kept in one MemoryContext. Instead, the recalc strategy keeps a separate memory
context for each node of the query tree. This way it can free the resources used by a single
RelOptInfo structure and all Paths that it contains. The QueryTree structure is also extended
with a field to temporarily store another RelOptInfo. It is used to keep the results of partial
recalculations separated from the last known to be valid move. The initialisation procedure
for the recalc strategy rebuilds all join relations in the tree and sets the temporary relation
field to NULL.

function init_recalc_strategy (node):
if not node:
return
if node—>left :
node—>rel = make_join_rel(node—>left —>rel ,
node—>right —>rel)
node—>tmp_ rel = NULL
init_recalc__strategy (node—>left)
init_recalc_strategy (node—>right)

The strategy uses some helper functions, that first need to be introduced. The first one
applies a boolean function to each element of a list, but stops if the function application
returns false as a result. It is useful for implementing short-circuiting operations on lists of
query tree nodes. The helper returns true if all elements of the list have been processed and
false otherwise.

function walk_list(list , fun, extra_arg):
for elem in list:
if not fun(elem, extra_arg):
return false
return true

Then there are some functions that are used to transform parts of the query tree. They all
take a single node as an argument, and a boolean extra argument that specifies whether they
should operate on the temporary relation or the actual relation stored in the node. They are
designed to be used with the previously defined list walking function. The recalc function
recalculates the content of a node and stores the result either as the new node’s relation
or using the new temporary relation field, depending on the second boolean argument. An
additional complication is deciding which fields from the child nodes should be used to form
the joinrel. The rule is that if the temporary relation is present, it is chosen. Otherwise the
main relation is used.

function recalc(node, real):
left = node—>left —>tmp_rel or node—>left —>rel
right = node—>right —>tmp_rel or node—>right-—>rel
joinrel = make_ join_rel(left , right)
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if not joinrel:
return false

if real:

node—>rel = joinrel
else:

node—>tmp_rel = joinrel

return true

The remove function frees the RelOptInfo and all Paths contained in it. The boolean argument
is used to decide whether the real relation or the temporary one should be freed. Apart from
freeing resources it also removes the relation from the global planner cache, forcing a rebuild
the next time a join with that label will have to be formed.

function remove(node, real):

if real:

rel = node—>rel
else:

rel = node—>tmp_ rel

it rel = NULL:

return true
remove_ from_ planner(rel)
free(rel)
return true

The nullify and switch functions are simple and self-explanatory. Observe that the former
pays attention to the boolean argument, while the latter does not.

function nullify (node, real):
if real:
node—>rel = NULL
else:
node—>tmp_rel = NULL
return true

function switch(node, real):
t = node—>rel
node—>rel = node—>tmp_ rel
node—>tmp_rel = t

Finally, two functions are used to return the nodes that are common ancestors of two given
nodes and to return the symmetric difference of their ancestors.

function common_ ancestors(nodel, nodel):
al = ancestors(nodel)
a2 = ancestors(node2)
return al N a2

function exclusive_ancestors(nodel, node2):
al = ancestors(nodel)
a2 = ancestors(node2)
return al A a2
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With these functions defined we can write the main part of the algorithm. It handles swapping
two trees and recalculating parts of it, making sure wasted effort is kept minimal. The first
step is swapping two nodes, just like in the move strategy, and gathering their ancestors.
During the whole move we will only be rebuilding nodes that are ancestors of the two chosen
nodes. The rest is not affected by swapping them around, and because we keep built relations
between strategy invocations, we are sure they already exist in the planner.

function swap_and_recalc(nodel, node2):
swap_subtrees(nodel, node2)
ca = common_ancestors(nodel, node2)
ea = exclusive__ancestors(nodel, node2)

The exclusive ancestors are then recalculated. The results are put in the temporary relation
slot. Note that none of the relations that will be rebuilt in this phase could have existed in the
original tree, and so they are not in the global planner cache. This means that we do not have
to remove any relations from the planner before executing this step. This also means that in
case of failure during this step, we simply need to remove the newly built relations from the
planner and clean up the temporary relation slots. After swapping the subtrees back, we will
reach the original state, with all nodes containing valid RelOptInfos.

ok = walk_list(ea, recalculate , false)
if not ok:
walk _list (ea, remove, false)
walk_list (ea, nullify , false)
swap_subtrees(nodel, node2)
return false

The common ancestors are a bit more problematic. The relations with these labels already
exist in the planner cache, so we first need to remove them to force a rebuild after swapping
subtrees in line 2. If the recalculation succeeds, we have thus rebuilt the root relation and
can compare costs to determine acceptance.

walk_list (ca, remove, true)
walk_list (ca, nullify , true)
ok = walk_list(ca, recalculate , false)
if ok:
ok = acceptable(old_cost, new_ cost)

If recalculating the common ancestors failed, they relations built so far need to be removed
from the planner and the original state needs to be restored. Note that we do not have to
recalculate the exclusive ancestors, for the same reasons we did not have to do it in lines
6-10.

if not ok:
walk list (ea, remove, false)
walk_list (ea, nullify , false)
walk list(ca, remove, false)
walk_list (ca, nullify , false)
swap_subtrees (nodel, node2)
walk _list (ca, recalculate, true)
return false

After the common ancestors are rebuilt and the acceptance function returns true, we only
have to promote the already built RelOptInfos to the main relations of the nodes. We first
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promote the exclusive ancestors, removing the relations that formerly were the main ones
and replacing them with the temporary ones. After that we switch the roles of relations in
common ancestors. Note that we already removed their old versions in line 11. Finally we
clean the temporary relation slot.

walk list (ea, remove, true)

walk _list (ae, switch_contexts, true)
walk list (ca, switch_contexts, true)
walk_list (ea, nullify , false)

walk _list (ca, nullify , false)

return true

With that function defined, it is easy to write the main pivot strategy procedure. It is similar
to the mowve procedure, but simple swapping is replaced by the swap_and_recalc function
that takes care of rebuilding necessary parts of the query tree.

function saio_recalc ():

choices = children (root)

nodel = random_node(choices)
choices —= (nodel + children (nodel))
choices —= (ancestors(nodel) + sibling (nodel))

node2 = random_node(choices)

if not node2:
return false

if not swap_and_recalc(nodel, node2):
return false

return true

The recalc strategy turns out to be the one that gives best results. Complexity brought
be tracking each RelOptInfo separately is compensated by lower CPU consumption due
to recalculations. Simple subtree swapping turns out to be an efficient enough method of
morphing the query tree compared to pivoting. Because the algorithm takes care to avoid
needless computation, localising tree changes is less important. On the other hand, recalc
does not do anything to lower the number of invalid states visited by the algorithm. It only
makes the failures be detected earlier and recovery from them cheaper. As we will see in
chapter 4 it is enough to get comparable or even better results than GEQO.
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(a) A query tree with two chosen nodes. (b) In case of an early failure no relations are
rebuilt, just the ones drawn as dashed are discarded.
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(c) If the failure occurs when building a common (d) If there are no failures, the whole tree is rebuilt.
ancestor the dashed nodes get discarded and the
dotted ones need to be rebuilt.

Figure 3.6: Visual explanation of the SAIO recalc strategy. Only the necessary relations are

rebuilt in case of a failure.
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Chapter 4

Results

This chapter presents the comparison results between GEQO and SAIO. Comparisons with
the standard planner module are not done, as they would usually not be possible. The
standard planner, if forced to run over the test cases presented here, would quickly exhaust
all available memory. Next we present resource consumption reports that compare memory
usage, CPU utilisation and plan quality of SAIO according to various algorithm parameters.
As mentioned in section 1.3, the quality of the plan is measured by the estimated total
execution cost. The goal of the optimiser is minimising the estimated cost, not the execution
time — the latter is a task of the executor. None of the test queries were actually executed,
only planned.

4.1. Test environment

Measurements were done with two different queries provided by members of the PostgreSQL
community. It has been a deliberate choice to use real-world queries that originated in
production systems, rather than ones that have been automatically generated. The simulated
annealing module aspires to be a general purpose optimiser plugin and using artificial queries
would risk not stressing critical parts of the algorithm, like ones responsible for handling outer
joins. One of the queries used is moderately complex, with around 100 relations. The other
one is more complex, with relation number in the range of 1000. Both queries in question
and the schema definition can be found in the code appendices.

All tests were done using the development version 9.1 of PostgreSQL as of July 2010,
compiled from source. The cluster was running on an Intel Core2 Quad CPU machine with a
2.83GHz processor clock and 8 GB of main memory. No modifications were done to the default
configuration file of the database cluster. It is important to note that all tests were conducted
after disabling the limits discussed towards the end of 2.1.1, namely the query flattening and
subquery pulling limits. The idea behind that is that they constraint the solution space to a
small subset in which it is difficult to immediately see the quality of an algorithm, as it has
little room to prove its usefulness.

4.2. Comparison with GEQO

The first group of tests is a head to head comparison of execution time, memory consumption
and plan quality between GEQO and SAIO. The genetic optimiser was run with the default
settings, the simulated annealing planning was repeated with different algorithm parameters.
Each query has been planned five times and the average results for all values are presented.
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Let us also remind the formulas for the number of equilibrium moves, initial temperature
and cooldown factor.

moves__to__equilibrium = N X initial__rels
initial__temperature = 1 X initial__rels

new__temperature = temperature x K where 0 < K <1

algorithm | N factor | I factor | K factor | cost runtime | memory

GEQO n/a n/a n/a 1557.470000 | 0.523016 | 43849.600000
SAIO 4 2.000000 | 0.600000 | 1576.644000 | 0.389347 | 44441.600000
SAIO 6 2.000000 | 0.400000 | 1584.180000 | 0.323950 | 44464.800000
SAIO 6 2.000000 | 0.600000 | 1569.574000 | 0.567734 | 44577.600000
SAIO 8 2.000000 | 0.400000 | 1572.380000 | 0.453518 | 44476.000000
SAIO 12 2.000000 | 0.600000 | 1575.320000 | 1.262268 | 44746.400000
SAIO 12 2.000000 | 0.800000 | 1574.166000 | 3.009681 | 45197.600000

Table 4.1: For a moderately sized query GEQO gives slightly better results

For the first test query GEQO produces better plans than any combination of SAIO
parameters. On the other hand, the difference in cost is not large and with low number of loops
before reaching equilibrium and a large temperature reduction factor SAIO is significantly
faster. Memory consumption for both modules is very similar, which is not unexpected, as
they both release most used memory after reconstructing the root RelOptInfo, keeping just
small amounts of bookkeeping information.

algorithm | IV factor | I factor | K factor | cost runtime memory

GEQO n/a n/a n/a 22417.210000 | 809.662594 | 227880.000000
SAIO 4 2.000000 | 0.600000 | 21139.506000 | 122.251778 | 196618.400000
SAIO 6 2.000000 | 0.400000 | 20853.768000 | 100.508593 | 199447.200000
SAIO 6 2.000000 | 0.600000 | 20921.834000 | 193.073352 | 205004.000000
SAIO 8 2.000000 | 0.400000 | 20698.076000 | 146.922708 | 195714.400000
SAIO 12 2.000000 | 0.600000 | 20584.972000 | 408.599637 | 218168.800000
SAIO 12 2.000000 | 0.800000 | timeout timeout 244882.400000

Table 4.2: For a very complex query GEQO gives clearly inferior results

The second test query is much larger, with thousands of relations taking part in the
join ordering process. It also includes numerous outer joins, which create strict join order
restrictions and cause many moves to be invalidated for semantic reasons. On such a query
with the flattening limits removed SAIO is clearly superior than GEQQO, both in runtime and
in plan quality. However, for very high parameter values it failed to provide a result within
a limit of 900 seconds. A dependency between the equilibrium and temperature reduction
factors and result quality and execution time can also be observed.
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4.3. Influence of SAIO parameters

Choosing different parameters for the simulated annealing algorithm can can influence both
the quality of the results and the runtime. It is quite obvious that increasing the K factor and
decreasing the I factor will increase runtime. It turns out that for moderately sized queries
it does not materially improve the output quality. This result suggests that for queries that
are not sufficiently large the benefits of simulated annealing are not fully visible.

On the other hand, results for the more complex query reveal that increasing the number
of loops the annealing algorithm does before reaching equilibrium does influence the obtained
result. The experiments confirm an intuitive understanding — more computation before
declaring the state to be in equilibrium give the system more chances to reach a lower cost,
which in turn produces better plans. The same happens with the temperature reduction
factor. The higher it is, the more fine grained the process of cooling down the system is
and the plan has the opportunity to gradually move towards a more optimal state. Sudden
temperature drops that happen with cooling factors in the order of 0.5 make it more difficult to
obtain satisfying results. An interesting observation is that even if the temperature reduction
factor is very low, high number of equilibrium loops can still shift the balance enough for
the algorithm to produce good plans. A possible explanation might be that a lot of moves
are rejected as invalid, and so the temperature does not play such a big role. Essentially,
the acceptance function rarely gets called. Making the inner loop longer makes finding a
succeeding move more probable, and so large equilibrium loops factor can outweigh a low
temperature reduction factor.
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Chapter 5

Future development

There is a number of improvements that could be implemented in SATO to address some of its
issues, make it produce better plans and take less CPU time. Some of them are enhancements
of the existing algorithm, others are different approaches that could be integrated into the
module code. Many implementation choices done during the development of SAIO were
influenced by the way the PostgreSQL planner works internally and by the interface that
it exposes. The module has been developed without any modifications to the source code
of PostgreSQL. As a result, it contains some workarounds and unnecessary complexity that
stems solely from the need to integrate with the structures used by PostgreSQL. When
the module will be considered mature enough, changes in the upstream system could be
requested. A number of core developers expressed positive views on modifying the standard
query planner to make modules such as SAIO easier to write.

In this chapter a few ideas of improvements for SAIO will be discussed. They range from
simple and straightforward to generic and open-ended. All of them have as the goal improving
plan quality — ways of introducing better support for simulated annealing into PostgreSQL
will not be covered here.

5.1. Cost estimation function

The cost estimation function used by SAIO simply looks at the cost of the cheapest Path in
the root RelOptInfo. This is exactly what the existing genetic algorithm does, but it is not
ideal. First, it ignores the startup cost, which for queries planned for usage in SQL cursors can
result in reduced plan quality, as perceived by the user. Addressing this would be relatively
straightforward. One would have to take note of the planner flag telling whether the query is
planned for full execution or as part of creating a cursor and use the cheapest startup Path
accordingly.

A much more complex issue is whether the total cost is the correct value to use when
comparing plans. One idea would be to include the number of Cartesian joins in the cost
computation. Joins without join conditions usually result in increasing the planned runtime
cost, but sometimes that increase is not big enough to make a move unacceptable. If the
cost estimation function would heavily penalise plans that increase the number of Cartesian
joins, it could prevent the algorithm from generating such join orders, and this in turn would
lower the risk of the Cartesian join staying in the tree forever, due to the nodes that form it
never again being chosen for the swap. Not that GEQO never creates Cartesian joins, unless
it is the only way to produce a valid join order. This is a difference from SAIO, where only
the initial state is generated with care to avoid Cartesian joins. After that the module trusts
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that clauseless joins will cause such cost increase, that they will always get rejected by the
acceptance function.

5.2. Smarter move generating

The three implemented strategies still leave a lot do be desired. In section 5.1 we discussed
the dangers of introducing Cartesian joins. Even under the assumption that the acceptance
function will reject trees with too many joins without join constraints, it means that all
computation done in the move will be wasted. That is the reason why sometimes GEQO
obtains better results than SAIO — it avoids cross joins in every iteration of the optimisation
loop. An intelligent move generating strategy would recognise clauseless joins and avoid
continuing with the move if one is detected, or at least would include a random (but rather
strong) rejection mechanism for such situations. The implemented recalc strategy includes a
prototype of that approach, omitted in the pseudocode in 3.3.3 for brevity, but it still could
get improved.

Another omitted optimisation the recalc strategy has is early rejection of joins that turn
out to produce much more costly plans than the original join order. The idea behind it is that
sometimes a swap of two subtrees can result in one particularly expensive join, that will then
carry its cost up to the higher levels of the query tree, eventually causing the whole move to
be rejected, but forcing all RelOptInfos taking part in the join to be recomputed. What recalc
does to mitigate the problem is that when rebuilding each node, if the join relation has been
successfully built, it checks if its cost is not too high. More specifically, it compares the cost
of that particular RelOptInfo with the cost of the root RelOptInfo from the previous state.
If the former is higher, the total cost of the tree after rebuilding everything will certainly
be at least as high, so the acceptance function will be invoked. Instead of waiting for the
rest of the relations to be rebuilt, recalc checks for acceptance immediately, using the cost of
the current RelOptInfo. If it gets rejected, the join is treated as if it has been illegal. This
of course means that if the acceptance function returns true, rebuilding the parent of the
current RelOptInfo will also cause an acceptance test, because the parent’s cost will include
the cost to construct the child. Experiments show however, that inner nodes with cost higher
than the previously built root node are almost always signs of a tree that will eventually be
rejected, so the heuristic with early acceptance testing is justified.

Finally there is the question of invalid join orders. If the random swap results in a join
ordering that is semantically invalid, the whole move is wasted. Currently the recalc strategy
focuses on early detection of such situations, but ideally that would be avoided altogether.
The GEQO module, because of the way it rebuilds the join tree encoded in the Chromosome,
does not have this problem. Every Chromosome represents a valid join order and can be used to
construct a single RelOptInfo that represents the result of the query. The difficulty of avoiding
invalid join orders lies in the way PostgreSQL keeps track of which relations can and which
cannot be joined to each other. Designing an algorithm that would be capable of choosing
nodes to swap while being able to guarantee validity of the resulting tree is an interesting
and nontrivial undertaking in itself. Even more difficult would be making such algorithm fast
enough to avoid dominating the CPU cost of the planning process. If implemented correctly,
it could potentially vastly increase the quality of plans SAIO is able to produce.

Somewhat related is the fact that internal PostgreSQL procedures always consider all
Paths when building a RelOptInfo. Typically, a simulated annealing algorithm would regard
changing the access pattern for a relation as a valid move. PostgreSQL folds all these
possibilities into one move, the result being very expensive RelOptInfo construction. An
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indirect result of this is that failed moves are so destructive — recalculation costs lots of
CPU time and the dominating factor in the process is join relation construction.

5.3. Two phase optimisation (TPO )

Algorithms based on simulated annealing work best if their starting point is not too far from
an acceptable solution. If the initial state is chosen completely at random, the first couple
of moves will not bring it to a more reasonable one quickly. This is due to the temperature
being initially high, and so the chances of taking an uphill move are also substantial. On
the other hand, if the starting tree is already in the part of the solution space with small
local minima and little differences between neighbouring states, simulated annealing works
fairy well. This observation has led to the proposal of two phase optimisation [6]. In TPO
the optimisation process consists of two parts. In the first one, the acceptance function is set
to reject every uphill move. This part is sometimes called iterative improvement. It is aimed
at reducing the initial cost quickly without straying too much due to accepting moves that
do not really help avoiding local minima, as the algorithm is still in the range of very high
costs. After the first phase ends, a simulated annealing process is initiated, starting from the
point in which iterative improvement ended. Yet another variant of TPO starts with several
randomly chosen points and runs iterative improvement on all of them. The one that yields
lowest cost is takes as a base for simulated annealing.

Adding TPO features to SAIO would in principle be straightforward. All needed functions
and infrastructure is already implemented. However it is uncertain if two phase optimisation
would be able to improve results significantly. As we have seen, the biggest problem for SAIO
is high calculation cost of single relations. TPO would only eliminate the cost of executing
the acceptance function, which is completely overshadowed by CPU time necessary to build a
relation. The optimisations present in the recalc strategy could indiscriminately reject nodes
with higher cost than the previous tree, but the savings are likely to be small.
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